How to Differentiate a Quantum Stochastic Cocycle

نویسندگان

  • J. MARTIN LINDSAY
  • MARTIN LINDSAY
چکیده

Two new approaches to the infinitesimal characterisation of quantum stochastic cocycles are reviewed. The first concerns mapping cocycles on an operator space and demonstrates the role of Hölder continuity; the second concerns contraction operator cocycles on a Hilbert space and shows how holomorphic assumptions yield cocycles enjoying an infinitesimal characterisation which goes beyond the scope of quantum stochastic differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum random walks and thermalisation

It is shown how to construct quantum random walks with particles in an arbitrary faithful normal state. A convergence theorem is obtained for such walks, which demonstrates a thermalisation effect: the limit cocycle obeys a quantum stochastic differential equation without gauge terms. Examples are presented which generalise that of Attal and Joye (2007, J. Funct. Anal. 247, 253–288).

متن کامل

On Markovian Cocycle Perturbations in Classical and Quantum Probability

We introduce Markovian cocycle perturbations of the groups of transformations associated with the classical and quantum stochastic processes with stationary increments, which are characterized by a localization of the perturbation to the algebra of events of the past. It is namely the definition one needs because the Markovian perturbations of the Kolmogorov flows associated with the classical ...

متن کامل

ar X iv : m at h - ph / 0 51 20 42 v 1 1 2 D ec 2 00 5 QUANTUM STOCHASTIC POSITIVE EVOLUTIONS : CHARACTERIZATION , CONSTRUCTION , DILATION

A characterization of the unbounded stochastic generators of quantum completely positive flows is given. This suggests the general form of quantum stochastic adapted evolutions with respect to the Wiener (diffusion), Poisson (jumps), or general Quantum Noise. The corresponding irreversible Heisenberg evolution in terms of stochastic completely positive (CP) maps is constructed. The general form...

متن کامل

ar X iv : m at h - ph / 0 51 20 39 v 1 1 2 D ec 2 00 5 ON STOCHASTIC GENERATORS OF COMPLETELY POSITIVE

A characterisation of the generators of quantum stochastic cocy-cles of completely positive (CP) maps is given in terms of the complete dissipa-tivity (CD) of its form-generator. The pseudo-Hilbert dilation of the stochastic form-generator and the pre-Hilbert dilation of the corresponding dissipator is found. The general form of the linear continuous structural maps for the algebra of all bound...

متن کامل

Completely positive quantum stochastic convolution cocycles and their dilations

Stochastic generators of completely positive and contractive quantum stochastic convolution cocycles on a C∗-hyperbialgebra are characterised. The characterisation is used to obtain dilations and stochastic forms of Stinespring decomposition for completely positive convolution cocycles on a C∗-bialgebra. Stochastic (or Markovian) cocycles on operator algebras are basic objects of interest in qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010